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SUMMARY

The LDEF spacecraft flew in a. 28.5 ° inclina.tion circular orbit with an altitude in the range

fl'om 172 to 258.5 nautical miles. For this orbital altitude and inclination two components con-

tribute most of the penetrating charge particle radiation encountered--the gala.ctic cosnfic rays

and the geonmgnetically trapped Van Allen protons. Where shielding is less than 1.0 g/cm '2

geomagneticMly trapped electrons make a significant contribution. The "Vette" models (ref. 1-3)

together with the associated magnetic field models (ref. 4) were used to obtained the trapped

electron and proton fluences. The mission proton doses were obtained from the fluence using

the Bm'rell proton dose program (ref. 5). For the electron and bremsstrahhmg close we used the

MSFC electron dose program (ref. 6,7) The predicted doses (ref. 8) were in general agreement

with those measured with on-board thermohmfinescent detector (TLD) dosimeters (ref. 9). The

NRL package of programs, CREME, (ref. 10) was used to calculate the linear energy transfi_r

(LET) spectrum due to galactic cosmic rays (GCtl) and trapped protons (ref. 8) for comparison

with LDEF measurements (ref. 11).
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INTRODUCTION

The LDEF spacecraftflew in a 28.5° inclination circular orbit with an altitude in the range
fl'om 172 to 258.5 nautical miles. It wasgravity-gradient stabilized alld oriented so that one side
alwayspointed along the velocity vector. For this orbital altitude and inclination two coml)o-

nents c(mtribute most of the penetrating charge particle radiation encountered--the galactic cos-

mic rays and the geonmgnetically tra.pped Van Allen 1)rotons. Where shielding is less than 1.0

g/cm 2 geomagnetically trapl)ed electrons make a significant contribution. All three som'ces are

strongly modulated by the Earth's magnetic field. The trapped particles follow a helical path

al)out a magnetic field line as shown in figure 1. As the field intensity increases, both the diam-

(,ter and the pitch c,f the helix decrease until the pitch becomes zero. The point with zero pitch

angle is called the mirror point and the center of the helical path is called the guiding center.

From here the helix reverses direction and particles travel up the field line toward decreasing

field intensity and away fi'om the Earth. Almost all the trapped flux at LDEF altitudes will be

encountered in the region called the South Atlantic Anomaly (SAA) shown in figure 2, which is

produced because the Earth's magnetic field, though approximately dipolar, is not centered on

the Ea.rth. In the South Atlantic Anomaly ahnost all the particles observed are near their mir-

ror points. Any trapped particle there which is not nearly mirroring will travel deep into the at-

mosphere and be scattered or stopped by atmospheric interactions. Thus the flux is anisotropic

with most of the ftttx arriving from a. narrow band perpendicular to the local geomagnetic field

direction. At nxospheric interactions also affect the trapped proton angular distribution in another

fashion as shown in figure 3. Trapped protons that are observed traveling eastward are following

guiding centers above the observation point mad protons traveling westward are following guiding

centers below the observation point. The gyroradius (the radius of the helical path) for energetic

protons in the SAA is on the same order as the atnmspheric density scale height. Thus west-

ward traveling protons encounter a significantly nlore (h_nse atmosphere and are more likely t(J

suffer atmosl)heric interactions and be lost. The resulting energy-dependent anisotropy is called

the east-west effect. Galactic cosmic rays experience a similar effect. A model for 1)redicting the

trapped proton angular distribution has been developed (ref. 12) recently. A large part of the

calculational effort (ref. 13) of the LDEF Ionizing Radiation Special Interest Groul) has been di-

rected toward testing the prediction of this model against LDEF measurenxents (ref. 9, 14).

GEOMAGNETICALLY TRAPPED PROTON AND ELECTRON FLUXES

To predict the trapped fluxes the current environment model in use is the "Vette" model

(ref. 1-3) together with the associated magnetic field models (ref. 4). To obtain the LDEF mis-

si()n l_hlences we calculated long-term average fluxes for five circular orbits at 258.5, 255.0, 249.9,

230.0, and 172.0 nautical mile altitudes which occurred on mission days 0, 550, 1450, 1950, and

2105, respectively, and did a numerical integration over time assuming a straight line between

time 1)oints. The solar F10.7 cm radio flux which characterizes solar activity exceeded 150 al)out

mission day 1540 (June 27, 1988). Thus the last 565 days or 27 (?_ of the mission was sl)ent un-

der solar maximum conditions. The environment models used for solar mininmm (the first three

times) were APSMIN (ref. 2) for protons and AE8MIN (ref. 2,3) for electrons and the magnetic

field model was the IGRF 1965.0 80-term model (ref. 4) projected to 1964, the epoch of the en-

vironmental model. The enviromnent models used for solar maximum (the last two times) were
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AP8MAX (ref. 2) for protons and AE8MAX (ref. 2,3) for electrons and tile magnetic field model
was the Hurwitz USCS1970168-term model (ref. 4) for 1970,the epochof the emdromnental
model. (The referencesprovided for the electron environment document the previousmodels
to AE8MIN and AESMAX which remain undocumented.) SinceLDEF was at a lower altitude

during the last part of the mission about 15% of the proton fluence and 24(Z,, of the electron flu-

ence was received under solar maximmn conditions. In figure 4 the t rapl)ed proton fluence is

ccmlpared to the galactic proton fluence and the atmospheric albedo fluences due t.o protons and

neutrons produced by GCR interactions in the atmosphere. The galactic proton fluence was pro-

duced by the CREME code (ref. 10) which modified the free space spectrmn external to the ge-

omagnetosphere based on the vertical rigidity cutoff at points along the LDEF orbit. The albedo

fluence was calculated from atmospheric transport of GCR (ref. 1,5). Figure ,5 shows the 1)re -

dieted electron fluence.

TOTAL MISSION DOSE

The mission proton doses were obtained from the fluence using the BurreU proton dose

progrmn (ref. 5) which is based on the "straight-ahead" and "continuous-slowing-down" ap-

proximatic,ns fi:,r transporting the protons. Two simple geometries were used-a, point tissue re-

ceiver material at the center of a spherical aluminum shell and a point tissue receiver material

behind a plane aluminunl slab with infinite shielding behind the receiver. N_r the electron and

1)remsstrahhmg dose we used the MSFC electron dose program (ref. 6). The electron dose is

based cm fits to data from the ETRAN electron Monte Carlo program (ref. 7). Bremsstrahhutg

dose is based on exl)onential attenuation with buildup factors from an al)l)roximated scmrcc. It.

yields fair agreement with more complicated trausports. It only 1)erforms the slab geometry cal-

culation. As an estimate for the spherical shell geometry we doubled the slab results which un-

derestimates the actual result. The close clue to trapped protcms plus secondary 1)article, the dose

due to electrons plus bremsstrahhmg and the total of the two are shown in figures 6 and 7 fii_r the

two geometries. A compariscm between the pre(licted total closes and doses measured with on-

board TLD dosinleters (ref. 9) is shown in figure 8. Although there is general agreement between

the measurement and the simple geometry calculation the planned three-dinlensic>nal geometry

calculation (ref. 16) will better clarify the spatial variations about LDEF due t.o shielding config-

uraticms and proton angular distributions.

MISSION LINEAR ENERGY TRANSFER (LET) SPECTRUM

The LET of a charged particle specifies how much energy is del)osited per unit length along

its path in passing through material. Particles with higher LETs are more likely to 1)r_duce sin-

gle event upsets (SEUs) in electronic devices and their lfiological effects are larger compared to

low LET particles. The NRL package of programs, CREME, (ref. 10) was used to calculate the

LET sl)ectrmn due to GCtt, the singly-charged anomalous cosmic ray component, and trapped

protons for comparison with LDEF measurements. The CREME package calculates the LET

spectra, at LEO by attenuating the GCR and anomalous flux to the orbital position based on

a magnetic rigidity cutoff model and material shielding transport, and then combining this re-

sult with the contribution due to trapped protons, also modified by material shielding transport.
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Seccmdariesat(' nc_thandled. Tile CREME results (ref. 8) for LDEF are shownin figure 9. B('-
cause of the long mission time, exl)erimentally measured LET spectra from the LDEF data (ref.

11) will hay,- greatly improved statistical accuracy at high LET compared to previous measure-
llltqltS.

CONCLUSIONS

Predictions of the LDEF mission's ionizing radiation exposure have been made using the

currently accepted models. The LDEF experimental measurements are providing an opportmfity

to validate the model predicti_ns. Preliminary results fi_r the measured dose are in general agree-

ment with predictions, suggesting that the Vette AP8 model, although more than 20 years ohl, is

still valid, at least for predictions of long-term average dose. The observed variation in dose and

activation about the spacecraft shows that the angular distribution of the trapped pr_tons must

l)e cc_nsidered where more accurate predictions are needed. Because no dose measurenlents were

at thil,ly shiehled locations where the electron contribution to the dose is dominant, the LDEF

results will provide little infl)rmation about the trapped electron environment. The measured

LET spectra fi'om LDEF will provide a test of the CREME model with the best xnea.surements

at high LET to date.
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Figure 1. Pathof trappedchargedparticlesin the geomagneticfield.
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Proton isoflux contours for energies above 34 MeV in the South Atlantic Anomaly at 440 km
(240 nautical mi.) altitude.
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NEAR MIRROR POINTS THE PROTONS CIRCLE NEARLY
A

PERPENDICULAR TO THE MAGNETIC FIELD LINES (B).

THE MAGNETIC GYRORADII OF THE TRAPPED PROTONS

ARE CLOSE TO THE ATMOSPHERIC SCALE HEIGHT.

Charged particle path near the mirror point.
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Figure 4. LDEF integral fluences from various sources (ref. 8).
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Figure 5. LDEF integral electron fluences (ref. 8).
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10 4

10 o

10-1

10 .2 10 1 10 0 10 t 10 2

Thickness (glcm 2)

The calculated LDEF mission absorbed dose from trapped protons and electrons (ref. 8). The
geometry consists of a point tissue receiver at the center of a spherical aluminum shell of the
given thickness.
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The calculated LDEF mission absorbed dose from trapped protons and electrons (ref. 8). The
geometry consists of a tissue receiver behind a plane aluminum slab of given thickness with
the receiver completely shielded from behind.
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Figure 8.
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Comparison of the predicted LDEF total mission dose (ref. 8) with on-board TLD dosimeter
measurements (mr. 9).
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Predicted LET spectrum at the LDEF orbit (ref. 8) from the CREME code (ref. 10).
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